The generator matrix

 1  0  1  1  1  0  1 X^2+X  1  1 X^2+X  1  1 X^2  1  1  1 X^2  X  1  X  1  1  1  X  1  X  1  1  0  1  1  X  1  1  1  1  1  1 X^2  X  1  1 X^2  0  1 X^2+X  1  1  1 X^2+X  1  1  1  1  0  1  X  1  1 X^2+X  X  1  0  1  1
 0  1  1  0 X^2+X+1  1  X  1 X^2+X+1  X  1  1 X^2  1 X+1  0 X^2+X+1  1  1 X^2+X  1 X^2+1 X^2+X+1  X  1  1  1  1 X+1  1 X^2 X^2+X+1  1 X^2+X X^2+X+1  X X+1  0  1  1  1  0 X^2+X  1  1  1  1  X X^2+X+1 X^2  1  0  1 X^2+1  X  0 X^2+X  1 X^2+1 X^2+X+1  1  1 X+1  1  0  0
 0  0  X  0 X^2+X  X  0  X  0  X X^2  0  X  0 X^2 X^2+X  X  X X^2+X X^2  0 X^2+X X^2  X  0 X^2 X^2+X  X  0 X^2 X^2 X^2  X  0 X^2+X X^2+X X^2 X^2+X X^2+X X^2+X X^2+X X^2 X^2+X X^2 X^2+X  0 X^2 X^2  X X^2 X^2  X X^2 X^2+X X^2  X X^2  0 X^2+X X^2+X  0 X^2 X^2+X X^2  0  X
 0  0  0  X  0  X  X  X X^2+X  0 X^2 X^2+X X^2  X X^2  X X^2+X X^2 X^2  0 X^2+X X^2+X X^2+X X^2+X X^2 X^2  0  X  0 X^2+X  X X^2+X X^2 X^2  X X^2  X  0 X^2  0 X^2+X X^2  X X^2 X^2+X  0  X X^2+X X^2 X^2+X  0 X^2+X  X  X X^2 X^2  0 X^2 X^2+X X^2  X  X  0  0  X  X
 0  0  0  0 X^2 X^2 X^2  0 X^2 X^2 X^2  0  0  0  0  0  0  0 X^2 X^2 X^2  0 X^2 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0  0  0 X^2  0  0 X^2 X^2 X^2 X^2 X^2  0 X^2  0 X^2  0  0  0 X^2 X^2 X^2 X^2  0 X^2 X^2  0 X^2 X^2 X^2 X^2 X^2  0  0 X^2 X^2

generates a code of length 66 over Z2[X]/(X^3) who�s minimum homogenous weight is 60.

Homogenous weight enumerator: w(x)=1x^0+78x^60+120x^61+257x^62+144x^63+194x^64+150x^65+263x^66+128x^67+191x^68+122x^69+195x^70+70x^71+70x^72+14x^73+5x^74+4x^75+7x^76+8x^77+14x^78+6x^79+2x^80+2x^85+2x^86+1x^88

The gray image is a linear code over GF(2) with n=264, k=11 and d=120.
This code was found by Heurico 1.16 in 0.372 seconds.